HVAC ENGINEERING FORMULAS

FORMULAS

AIR FLOW:

 $CFM = BTUH (SENSIBLE) \div (\Delta T X 1.08)$

CFM = VELOCITY X AREA IN SQ'

MIXED AIR DB = ID DB + [% FA X (OD DB - ID DB)]

COOLING CAPACITY:

BTUH (SENSIBLE) = CFM X ΔT X 1.08 (Also works for HEATING capacity)

BTUH TOTAL = CFM X 4.5 X Δ H (H = Enthalpy)

BTUH LATENT = CFM X .68 X Δ GRAINS PER LB.

BTUH LATENT = OZ. Water X 4101 ÷ 10 Minutes (10 minutes is a minimum sample time)

BTUH = REFRIGERATION EFFECT X LBS OF REFRIGERANT PER MIN X 60

ΔT DB = BTUH (SENSIBLE) ÷ (CFM X 1.08) (Also works for HEATING)

COOLING EFFICIENCY:

EER = BTUH ÷ TOTAL WATTS

TOTAL WATTS = CLOCK METER (SEE ELECTRIC METER)

ELECTRICAL:

COMPRESSOR PHASE BALANCE = AVERAGE VOLTAGE LEG TO LEG COMPARED TO THE HIGHEST LEG MUST NOT EXCEED 2.5%.

COMPRESSOR VOLTAGE TOLERANCE + - 10% (SEE EQUIP. SPECS)

ELECTRIC HEATERS 10

VOLTS X AMPS = WATTS

WATTS X 3.413 = BTUH

ENGINEERING DATA SHEET

AIR HANDLING UNITS

BTU/HR = CFM X $\Delta T + 10\%$

STEAM: LBS/HR = BTU/HR 1.000

WATER: GPM = $\frac{BTU/HR}{60 \times 8.3 \times \Delta T \text{ H},0}$

FOR $\Delta T = 20^{\circ}$

 $GPM = \frac{MBH}{10}$

FOR $\Delta T = 40^{\circ}$

 $GPM = \frac{MBH}{20}$

WATER (COOLING): 1 GPM = APPROX. 5,000 BTU/HR. AT ΔT OF 10°

CONVERTERS

LBS/HR = $\frac{\text{GPM X 60 X 8.3 X } \Delta T + 10\%}{1,000}$

 $LBS/HR = \frac{GPM \times \Delta T + 10\%}{2}$

VALVE PRESSURE DROPS - AP

STEAM: PROPORTIONING 15 PSI OR LESS - 80% OVER 15 PSI - ABSOLUTE

PRESSURE X .42

TWO POSITION MINIMUM OF 10%

WATER (TWO WAY): ΔP $\Delta T = 60^{\circ} - 50\%$ $\Delta T = 20^{\circ} - 75\%$ (SMALL BOOSTER PUMPS - 50%)

TWO POSITION AP LINE SIZE OR 10%

MISCELLANEOUS

<u>STEAM</u> <u>WATER</u> 1 LB/HR = 4 EDR 1 FT = .43 PSI 1 # EDR = 240 BTU/HR 1 PSI = 2.31 FT

Chapter 3 – Basic HVAC Calculations

Single-Path Systems - equations for supply air Supply Air for Cooling:

$$(Q_{sRS1})^S = \frac{(q_{SR1})^S}{C_1(t_R - t_s)}$$
 (3-32)

Supply Air for Dehumidification:

$$(Q_{sRL1})^{S} = \frac{(q_{LR1})^{S}}{C_{2}(W_{R} - W_{s})}$$
 (3-33)

Supply Air for Heating:

$$(Q_{sRS1})^W = \frac{(q_{SR1})^W}{C_1(t_s - t_R)}$$
 (3-34)

FAN LAWS:
Remember RPM is interchangeable for CFM
Note: new is the same as 1 and old is the same as 2

$$\left(\frac{CFM_{new}}{CFM_{old}}\right) = \left(\frac{RPM_{new}}{RPM_{old}}\right)$$

$$\begin{aligned} & \text{Formulas for problem solving} \\ & \text{CFM new} = \text{CFM old X} \left(\frac{RPM_{new}}{RPM_{old}} \right) & \text{RPM new} = \text{RPM old X} \left(\frac{CFM_{new}}{CFM_{old}} \right) \end{aligned}$$

$$\left(\frac{CFM_{new}}{CFM_{old}}\right)^2 = \frac{SP_{new}}{SP_{old}} \text{ Or } \left(\frac{CFM_{new}}{CFM_{old}}\right) = \sqrt{\frac{SP_{new}}{SP_{old}}}$$

Formulas for problem solving
$${\rm CFM\ new} = {\rm CFM\ old\ X\ } \sqrt{\frac{SP_{new}}{SP_{old}}} \quad {\rm SP\ new} = \left(\frac{CFM_{new}}{CFM_{old}}\right)^2$$

Fan Law #3
$$\left(\frac{CFM_{new}}{CFM_{old}}\right)^{3} = \frac{BHP_{new}}{BHP_{old}} \text{ or } \frac{CFM_{new}}{CFM_{old}} = \sqrt[3]{\frac{BHP_{new}}{BHP_{old}}}$$

CFM new = CFM old x
$$\sqrt[3]{\frac{BHP_{new}}{BHP_{old}}}$$
 BHP new = BHP old x $\left(\frac{CFM_{new}}{CFM_{old}}\right)^3$

ROOM NAME	Design Temp. (Dry Bulb) ° C (° F) ± 2 ° C (3.5 ° F)	% Relative Humidity	Pressure Relative to Atmosphere	Air Quality
Offices/Administration/ Mosque building	24 °C (75 °F) summer 22 °C (72 °F) winter	50% ± 5%	+0.05" (12.5 Pa)	ASHRAE 62.1
Conference Rooms or Auditorium	24 °C (75 °F) summer 22 °C (72 °F) winter	50% ± 5%	+0.05" (12.5 Pa)	ASHRAE 62.1
Training/ Waiting Rooms	24 °C (75 °F) summer 22 °C (72 °F) winter	50% ± 5%	+0.05" (12.5 Pa)	ASHRAE 62.1
Lobbies and Corridors	24 °C (75 °F) summer 22 °C (72 °F) winter	50% ± 5%	+0.05" (12.5 Pa)	ASHRAE 62.1
Libraries and Reading Areas	24 °C (75 °F) summer 22 °C (72 °F) winter	50% ± 5%	+0.05" (12.5 Pa)	ASHRAE 62.1
Restrooms and toilets	24 °C (75 °F) summer 22 °C (72 °F) winter	50% ± 5%	Negative pressure to the rest of the building	ASHRAE 62.1
Janitor's Room	26 °C (80 °F) summer 22 °C (72 °F) winter	50% ± 5%	Negative pressure to the rest of the building	Secondary air may be utilized

NATURAL GAS COMBUSTION:

Excess Air = 50%

15 ft.3 of air to burn 1 ft.3 of methane produces:

16 ft.3 of flue gases:

1 ft.3 of oxygen

12 ft.3 of nitrogen

1 ft.3 of carbon dioxide

2 ft.3 of water vapor

Another 15 ft.3 of air is added at the draft hood

GAS PIPING (Sizing - CF/hr.) = Input E

Input BTU's Heating Value

Example: 80,000 Input BTU's

1000 (Heating Value per CF of Natural Gas)

Example: 80,000 Input BTU's

2550 (Heating Value per CF of Propane)

= 31 CF/hr.

FLAMMABILITY LIMITS Propane 2.4-9.5 Butane Natural Gas 4-14

COMBUSTION AIR NEEDEDPropaneNatural Gas(PC=Perfect Combustion)23.5 ft.3 (PC)10 ft.3 (PC)(RC=Real Combustion)36 ft.3 (RC)15 ft.3 (RC)

ULTIMATE CO₂ 13.7% 11.8%

CALCULATING OIL NOZZLE SIZE (GPH):

BTU Input = Nozzle Size (GPH)

OR

BTU Output 140,000 X Efficiency of Furnace

FURNACE EFFICIENCY:

% Efficiency = energy output energy input

OIL BURNER STACK TEMPERATURE (Net) = Highest Stack
Temperature minus
Room Temperature

Example: 520° Stack Temp. - 70° Room Temp. = Net Stack
Temperature of 450°

KELVIN TO CELSIUS: C = K - 273CELSIUS TO KELVIN: K = C + 273

Typical Air Changes Per Hour Table

Residential	
Basements	3-4
Bedrooms	5-6 6-7 6-8
Bathrooms	
Family Living Rooms	
Kitchens	7-8
Laundry	8-9
Light Commercial	
Offices	
Business Offices	6-8
Lunch Break Rooms	7-8
Conference Rooms	8-12
Medical Procedure Offices	9-10
Copy Rooms	10-12
Main Computer Rooms	10-14
Smoking Area	13-15
Restaurants	
Dining Area	8-10
Food Staging	10-12
Kitchens	14-18
Bars	15-20
Public Buildings	-
Hallways	6-8
Retail Stores	6-10
Foyers	8-10
Churches	8-12
Restrooms	10-12
Auditoriums	12-14
Smoking Rooms	15-20

ELECTRIC HEATER 30

TOTAL WATTS = AVERAGE LEG VOLTAGE X EACH LEG AMPS = WATTS TOTAL OF EACH LEG WATTS ÷ 1.73

EXAMPLE: AVERAGE VOLTS X AMPS = WATTS AVERAGE VOLTS X AMPS = WATTS AVERAGE VOLTS X AMPS = WATTS

WATTS ÷1.73 = TOTAL WATTS

BTUH = TOTAL WATTS X 3.413

ELECTRIC METER:

KW FROM ELECTRIC METER = 20 (DISC REVOLUTIONS) X KH FACTOR X 3.6 ÷ SECONDS

METER TEST = TURN OFF ALL BREAKERS. PLUG 100-WATT LIGHT BULB INTO ONE KNOWN CIRCUIT AND APPLY ABOVE CALCULATION.

GAS:

THERM = 100,000 BTU

- NATURAL GAS IS APROX 1030 BTU PER CUBIC FOOT
- PROPANE IS APROX 2500 BTU PER CUBIC FOOT
- PROPANE HAS APROX 91,500 BTU PER GAL.

INPUT = METER REVOLUTIONS X CU' PER REVOLUTION X 3600 ÷ SECONDS OF REVOLUTIONS X BTU CONTENT PER CU'OF GAS. (AVERAGE BTU CONTENT IS 1000. PIEDMONT NATURAL GAS IN GREENVILLE IS 1038 BTU PER CU')

BTU OUTPUT OF AN APPLIANCE = BTU INPUT X EFF.

REFRIGERANT:

BTUH = (VAPOR ENTHALPY - LIQUID ENTHALPY) X *POUNDS OF REFRIGERANT PER MIN X 60 (*3 lbs. per minute per ton is normal flow rate)

WATER:

BTUH (WATER) = GPM X 500 X AT

HP = GPM X HEAD FT + 2800 (THIS IS FOR WATER AND A PUMP EFF. OF 70%)

GPM ON WATER SOURCE UNIT = PRESSURE DROP ACROSS HEAT EXCHANGER COMPARED TO EQUIPMENT DATA (SIMILAR TO STATIC CFM DATA). USE THIS AND ABOVE CALCULATION TO DETERMINE BTU EXCHANGE.

HVAC FORMULAS

TON OF REFRIGERATION - The amount of heat required to melt a ton (2000 lbs.) of ice at 32°F

288,000 BTU/24 hr. 12,000 BTU/hr.

APPROXIMATELY 2 inches in Hg. (mercury) = 1 psi

WORK = Force (energy exerted) X Distance Example: A 150 lb. man climbs a flight of stairs 100 ft. high

Work = 150 lb. X 100 ft. Work = 15,000 ft.-lb.

ONE HORSEPOWER = 33,000 ft.-lb. of work in 1 minute

ONE HORSEPOWER = 746 Watts

CONVERTING KW to BTU:

1 KW = 3413 BTU's

Example: A 20 KW heater (20 KW X 3413 BTU/KW = 68,260 BTU's

CONVERTING BTU to KW:

3413 BTU's = 1 KW

Example: A 100,000 BTU/hr. oil or gas furnace $(100,000 \div 3413 = 29.3 \text{ KW})$

COULOMB = 6.24 X 1018 (1 Coulomb = 1 Amp)

E = voltage (emf)

I = Amperage (current)

R = Resistance (load)

WATTS (POWER) = volts x amps or P = E x I

 $P(in KW) = \frac{E \times I}{1,000}$

U FACTOR = reciprocal of R factor Example:

 $\frac{1}{19}R = .050$

= BTU's transferred / 1 Sq.Ft. / 1°F / 1 Hour

B HVAC EQUATIONS—U. S. UNITS

TABLE 16-14 Air Equations (U.S.)

a)
$$V = 1096 \sqrt{\frac{V_p}{d}}$$

or for standard air (d = 0.075 lb/cu ft):

To solve for "d":

$$d = 1.325 \frac{P_b}{T}$$

or for standard air (C_a = 0.24 Btu/lb • °F):

Q (lat.) =
$$0.69 \times \text{cfm} \times _{\Delta}W$$
 (gr.)

f)
$$R = \frac{1}{U}$$

g)
$$\frac{P_1V_1}{T_1} = \frac{P_3V_2}{T_2} = RM$$

i)
$$V_p = \left(\frac{V}{4005}\right)^2$$

j)
$$V = V_m \left[\frac{d \text{ (other than standard)}}{0.075 \text{ (d = std. air)}} \right]$$

V_p = Velocity Pressure (in.w.g.)

d = Density (lb/cu ft)

P_b = Absolute Static Presure (in. Hg) (Barometric pressure + static pressure)

T = Absolute Tempeerature (480° + °F)

C, = Specific Heat (Btu/lb • "F)

d = Density (lb/cu ft)

at = Temperature Difference (°F)

△W = Humidity Ratio (lb or gr H₂O/lb dry air)

ah = Enthalp Diff. (Btu/lb dry air)

A = Area of Surface (sq ft)

U = Heat Transfer Coefficient (Btu/sq ft * hr * "F)

R = Sum of Thermal Resistances (sq ft+hr+*F/Btu)

P = Absolute Pressure (lb/sq ft)

V = Total Volume (cu ft)

T = Absolute Temp. (460° + °F = °R)

R = Gas Constant

M = Mass (lb)

TP = Total Pressure (in.w.g.)

V_p = Velocity Pressure (in.w.g.)

SP = Static Pressure (in.w.g.)

V = Velocity (fpm)

V_m = Measured Velocity (fpm)

d = Density (lb/cu ft)

A = Area of duct cross section (sq ft)

C = Duct Fitting Loss Coefficient

SENSIBLE HEAT FORMULA (Furnaces) :

BTU/hr. - Specific Heat X Specific Density X 60 min./hr. = X CFM X AT

.24 X .075 X 60 X CFM X Δ T = 1.08 X CFM X Δ T

ENTHALPHY = Sensible heat and Latent heat

TOTAL HEAT FORMULA

(for cooling, humidifying or dehumidifying)

BTU/hr. = Specific Density X 60 min./hr. X CFM X AH

= $0.75 \times 60 \times CFM \times \Delta H$

= 4.5 x CFM x ΔH

RELATIVE HUMIDITY = __Moisture present_ Moisture air can hold

SPECIFIC HUMIDITY = grains of moisture per dry air

7000 GRAINS in 1 lb. of water

DEW POINT = when wet bulb equals dry bulb

TOTAL PRESSURE (Ductwork) = Static Pressure <u>plus</u>
Velocity Pressure

CFM = Area (sq. ft.) X Velocity (ft. min.)

HOW TO CALCULATE AREA

Rectangular Duct Round Duct

 $A = L \times W \qquad \qquad A = \frac{\pi D^2}{4} \quad \text{OR} \quad \frac{\pi r^2}{4}$

RETURN AIR GRILLES - Net free area = about 75%

3 PHASE VOLTAGE UNBALANCE =

100 x maximum deg. from average volts
Average Volts

NET OIL PRESSURE = Gross Oil Pressure - Suction Pressure